

DIGITAL TWIN AS A SERVICE (DTAAS): A PLATFORM VISION FOR REAL-TIME 6G NETWORK INTELLIGENCE

Prof. Berk Canberk

The School of Computing, Engineering and The Built Environment Edinburgh Napier University, UK

b.canberk@napier.ac.uk

BCRG

Broadband Communication Research Group

WWW. bcrg Lik

www.bcrg.uk

Broadband Communication Research Group (BCRG) @ Napier

- **Professor** | The School of Computing, Engineering and The Built Environment, Edinburgh Napier University, UK
- Department Chair | Cyber-Security and Systems Engineering SG, The School of Computing, Engineering and The Built Environment, Edinburgh Napier University, UK
- **External Board Member & Academic Director** | BTS Group Biggest Cloud & Networking Company in Turkey

Research Area: Digital Twins, Real-Time Synchronization, Al-driven Orchestration, Semantic Communication

•	Publications (Journals/Conferences/Patents/Submitted)	89/9//10/13
•	Publications on Digital Twin (Journals/Conferences/Patents/Submitted)	40/32/6/10
•	Active Students (Postdoc/PhD/RA/Visiting)	1/5/2/2
•	Graduated Students (PhD/MSc)	7 / 21
•	Total Secured Funds as PI (since 2020)	>1.5M GBP

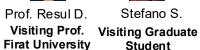
- **Area Editor** in IEEE Communications Surveys and Tutorials
- **Lead Editor** in IEEE ComSoc Best Readings in Digital Twins

Industrial Partner:

IEEE Senior Member

My Research Team

Yagmur Y. PhD, Napier PhD, Napier PhD, Napier PhD, Napier

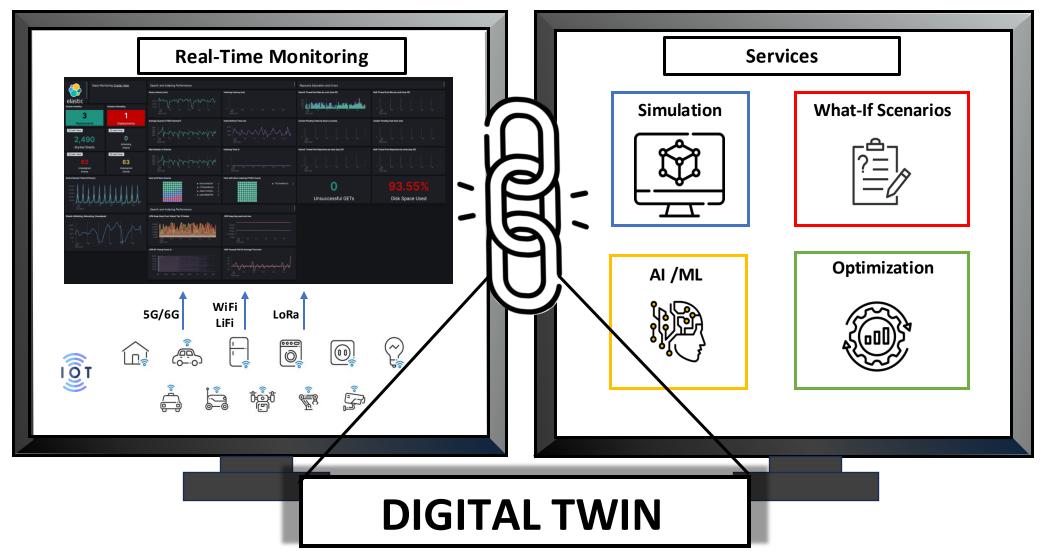


Dr. Mehmet Ali E. PostDoc, Napier

Ram K. Research

Arsen D. Research Assoc., Napier Assoc., Napier

Stefano S.


PhD, ITU

Co-Advice

Student University of

Bologna 2/18 Edinburah

What is Digital Twin?

What is Digital Twin?

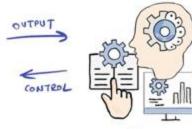
Digital Twin Design and It's Metrics

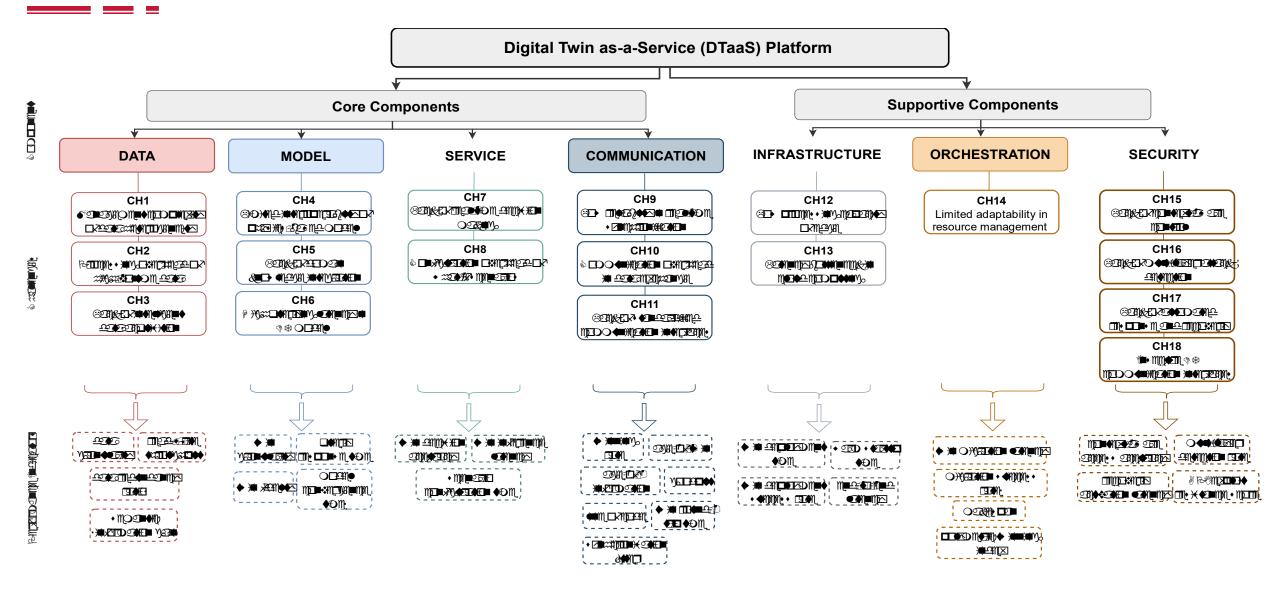
- Twin Fidelity:
 - How accurately does the DT reflect reality?
- Age of twin:
 - The time difference between the current state and the last update of the digital twin from the physical entity
- DT Elasticity:
 - How to autonomously scale a DT to meet its timelines requirement?
- Twin Granularity:
 - Which parts of the physical system are modelled and how deeply?
- Twinning rate:
 - The ratio of the frequency of updates from the physical system to the DT
- Polymetric twinning index:
 - Measures NDT performance across multiple dimensions, such as data handling, modeling, interface capabilities, and service delivery
- Twin communication overhead:

Simulation Features
"What may happen in the system?"

Digital Twin Features

"What is actually happening?"

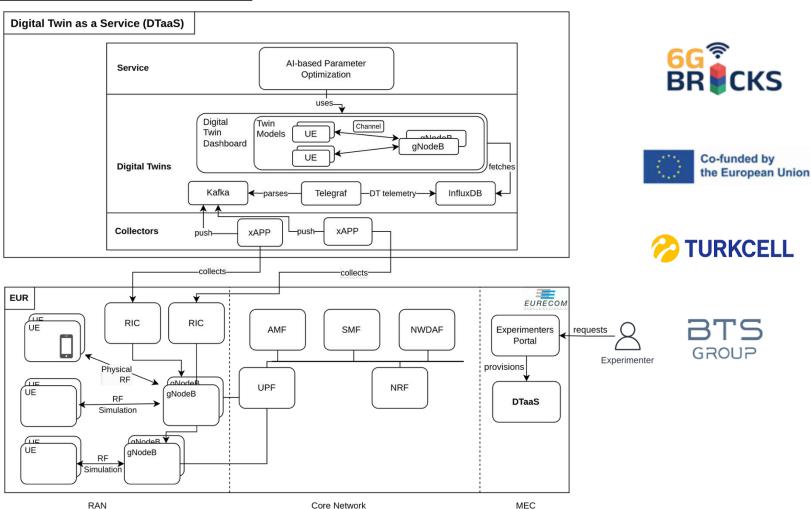




SERVICE SPACE

RTT delay and jitter

Digital Twin as a Service (DTaaS) Challenges

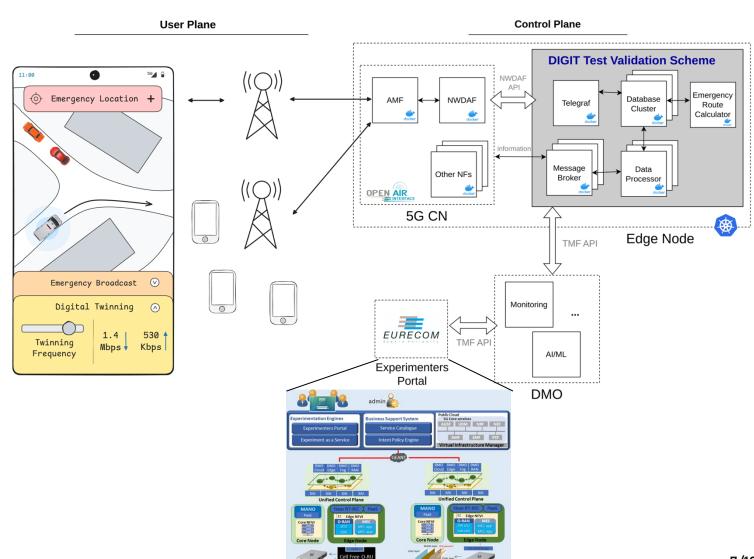


Projects

TwinRAN - Digital Twin Platform for 6G RAN Emulation

- RQ How to create a scalable virtual test environment for 6G RAN?
- WHY Limited physical infrastructure for multiple RAN deployments, and lack of mobility support in RF simulators
- HOW -
 - Containerized and Distributed DT Platform based on Open Air Interface (OAI) to support over 1000 UEs
 - Al-based channel hyperparameter tuning to support various UE-gNodeB mobility types

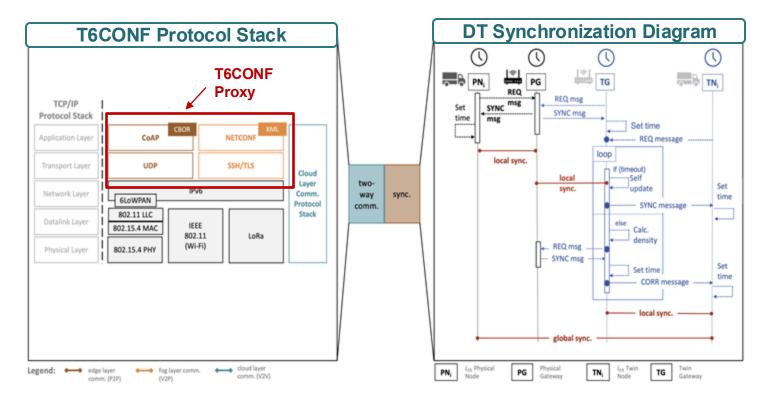
Some Outcomes


C. Tunc, K. Duran, B. Bilgin, G. Kalem, B. Canberk, 'DTRAN: A Special Use Case of RAN Optimization Using Digital Twin', in European Conference on Networks and Communications EuCNC & 6G Summit, Antwerp, Belgium, June 2024.
 A. Masaracchia, V.L. Nguyen, D.B. da Costa, E. Ak, B. Canberk, V. Sharma, T.Q. Duong, 'Towards 6G-enabled URLLCs: Digital Twin, Open RAN, and Semantic Communications', IEEE Communications Standards Magazine, September 2024, Scopus Journal Quartile: Q1.

Projects

DIGIT - DT-based Performance Validation Framework for 6G

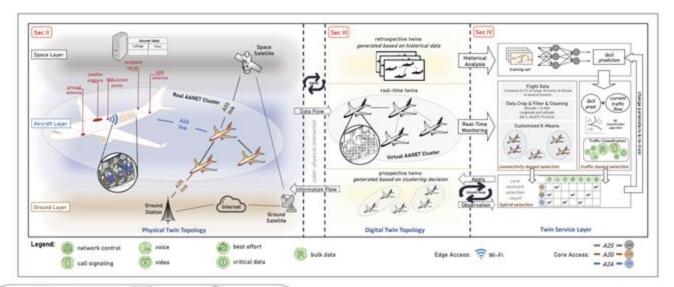
- RQ How to test and validate the performance of a 6G experimentation infrastructure?
- WHY 6G applications require stable performance under increasing user load but there are no validation schemes
- HOW -
 - UE agent API for physical-layer interaction with tunable DT frequency
 - Microservice-based DTenabled testing and validation framework for real-time decisionmaking

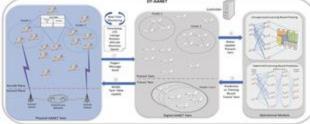


Real Time Digital Twin Communication Stack for Smart Cities

- RQ How to synchronize digital twins in IoT networks?
- WHY Resource constraints prevent real-time synchronization. The overhead of the communication has to be reduced.
- HOW -
 - Synchronization trigger based on topology changes
 - New Protocol using Automata Theory
 - Lower overhead
 - Decreased latency and RTT

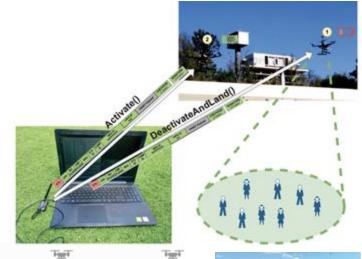
Some Outcomes

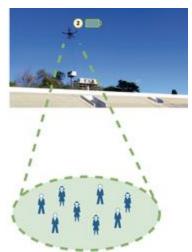

E. Ak, K. Duran, O. A. Dobre, T. Q. Duong, B. Canberk, 'T6CONF: Digital Twin Networking Framework for IPv6-Enabled Net-Zero Smart Cities', IEEE Communications Magazine, vol. 61, no. 3, pp. 36-42, March 2023, Scopus Journal Quartile: Q1.
 K. Duran, E. Ak, G. Yurdakul, B. Canberk, '6G-enabled DTaaS (Digital Twin as a Service) for Decarbonized Cities', in Workshop on Architectural Innovations for 6G: Native-Al and Digital Twin, IEEE International Conference on Communications (IEEE ICC), Rome, Italy, May 2023.



Real-Time Core Network Selection for High Altitude Platforms (HAP) in 6G, tested in our DTaaS

- RQ How to ensure uninterrupted and high-quality Internet access in aeronautical networks?
- WHY The dynamicity of aeronautical topology and traffic behavior, causes delay and reduce packet delivery ratio. A real-time core network selection is needed
- HOW -
 - Online recommendations made using clustering the aeronautical network and using ML to predict traffic behaviors
 - Decreased network selection delay
 - Increased PDR

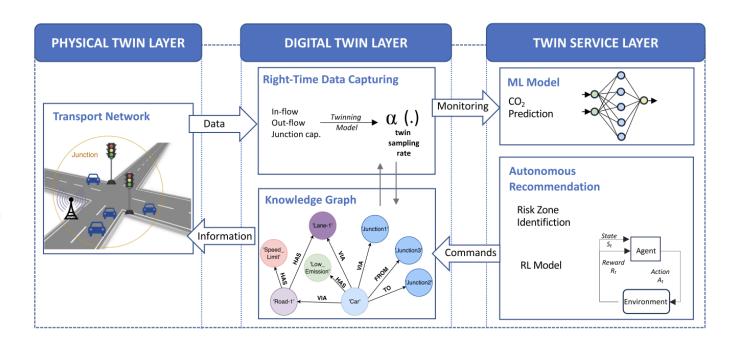

- E. Ak, B. Canberk, V. Sharma, O.A. Dobre, T.Q. Duong, 'What-if Analysis Framework for Digital Twins in 6G Wireless Network Management', The 20th International Wireless Communications & Mobile Computing Conference (IWCMC), Ayia prus, May 2024.
 T. Bilen, E. Ak, B. Bal, B. Canberk, 'A Proof of Concept on Digital Twin-Controlled WiFi Core Network Selection for In-Flight Connectivity', IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 60-68, September 2022, Scopus Journal Quartile: Q1.
 - T. Bilen, B. Canberk and T. Q. Duong, "Digital Twin Evolution for Hard-to-Follow Aeronautical Ad-Hoc Networks in Beyond 5G," in IEEE Communications Standards Magazine, vol. 7, no. 1, pp. 4-12, March 2023, Scopus Journal Quartile: Q1.



Energy-Aware Swarm Deployment for Drone-Base Stations in 6G: A DT Enhanced Approach

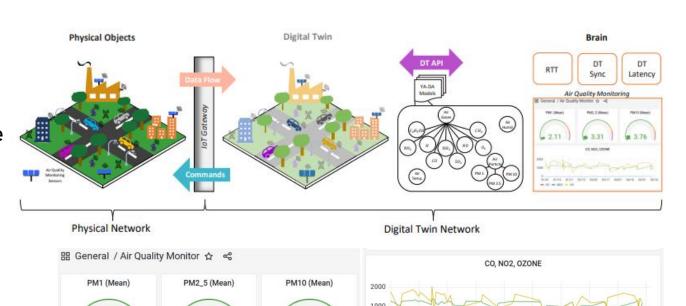
- RQ How to serve distributed management of drone BS for optimum coverage?
- WHY Battery constraints limit decision capability to maximize the coverage
- HOW -
 - Coordinated swarm flying algorithm via real-time communication protocol
 - Enhanced What-if analysis to test various scenarios via DT
 - Reduced relaying overhead
 - Reduced 'per drone deployment complexity'

- T.T. Bui, D.L. Nguyen, B. Canberk, V. Sharma, O.A. Dobre, H. Shin, T.Q. Duong, 'Digital Twin-empowered Integrated Satellite-Terrestrial Networks towards 6G Internet of Things', IEEE Communications Magazine, June 2024, Scopus Journal Quartile: Q1.
 C. Sun, G. Fontanesi, B. Canberk, A.H. Mohajerzadeh, S. Chatzinotas, D. Grace, H. Ahmedi, 'Advancing UAV Communications: A Comprehensive Survey of Cutting Edge Machine Learning Techniques', IEEE Open Journal of Vehicular Technology, May 2024, Scopus Journal Quartile: Q1
- E.E. Aydin, A. Akcasoy, F. Cakir, B.S. Cansiz, G. Secinti, B. Canberk, 'Distributed TDMA Scheduling for Autonomous Aerial Swams: A Self-Organizing Approach', IEEE Access, vol. 12, pp. 45631-45643, March 2024, Scopus Journal Quartile: Q1.
- T. Bilen, B. Canberk and T. Q. Duong, "Digital Twin Evolution for Hard-to-Follow Aeronautical Ad-Hoc Networks in Beyond 5G," in IEEE Communications Standards Magazine, vol. 7, no. 1, pp. 4-12, March 2023, Scopus Journal Quartile: Q1.



<u>Digital Twin-aided Green Mobility Management in Transportation Networks</u>

- RQ How to reduce emissions and control traffic in road transportation?
- WHY Lack of real-time control due to resource constraints and high latency in reasoning over traffic controls.
- HOW -
 - Using dynamically adjusted twin sampling rate and reducing the latency.
 - Reinforcement Learning-based decision-making
 - Reduced querying latency via knowledge graphs



- K. Duran, L.V. Cakir, A. Fonzone, B. Canberk, T.Q. Duong, 'Digital Twin-empowered Green Mobility Management in Next-Gen Transportation Networks', Submitted for Journal Publication, 2024.
- K. Duran, L.V. Cakir, G. Yurdakul, B. Canberk, 'A System Developed For Controlling The Data Flow Of The Digital Twin-Based Intelligent Transportation Applications And Modeling Of The Data And An Operation Method Thereof', The Patent Cooperation Treaty (PCT), Application No. PCT/TR2023/051855, 2023.
- K. Duran, E. Ak, G. Yurdakul, B. Canberk, '6G-enabled DTaaS (Digital Twin as a Service) for Decarbonized Cities', in Workshop on Architectural Innovations for 6G: Native-Al and Digital Twin, IEEE International Conference on Communications (IEEE ICC), Rome, Italy, May 2023.

Optimized Air Quality Monitoring with YANG-Based Data Modeling and Digital Twin

- RQ How to manage distributed sensors with different formats for efficient air quality monitoring?
- WHY Existing solutions suffer from high latency and low synchronization, limiting real-time analysis
- HOW -
 - YANG-based data modeling converts all sensor data into a single format for seamless integration
 - Selectively collection of only necessary data reduces latency and improves synchronization

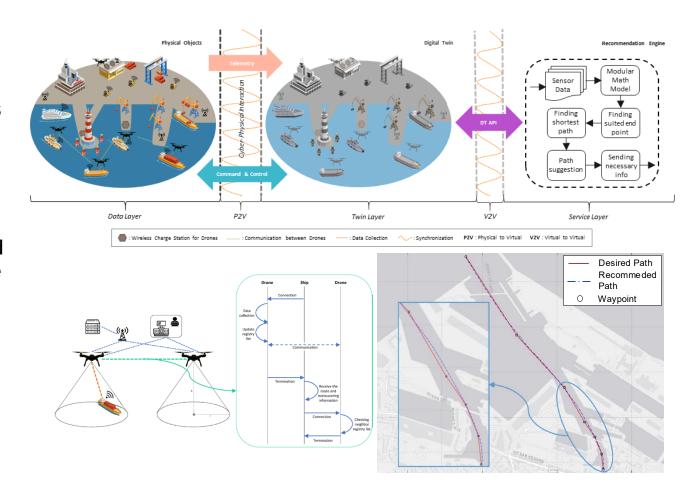
Some Outcomes

Y. Yigit, H. Ahmadi, G. Yurdakul, B. Canberk, T. Hoang, T.Q. Duong, 'Digi-Infrastructure: Digital Twin-enabled Traffic Shaping with Low-Latency for 6G Smart Cities', IEEE Communications Standards Magazine, April 2024, Scopus Journal Quartile: Q1.
 J. J. Figueroa, H. Shen, H. Ahmadi, B. Canberk, "A Distributed User-oriented IoT-based Air Pollution Monitoring", in IEEE CAMAD, Edinburgh, Scotland, UK, November 2023.

PM1, PM2 5, PM10

K. Huseynov, G. Yurdakul, Y. Yigit, B. Canberk, " Air Quality Monitoring System and Method ", The Patent Cooperation Treaty (PCT), Application No. PCT/TR2022/051669, 2022.

PM1 — PM2_5 — PM10

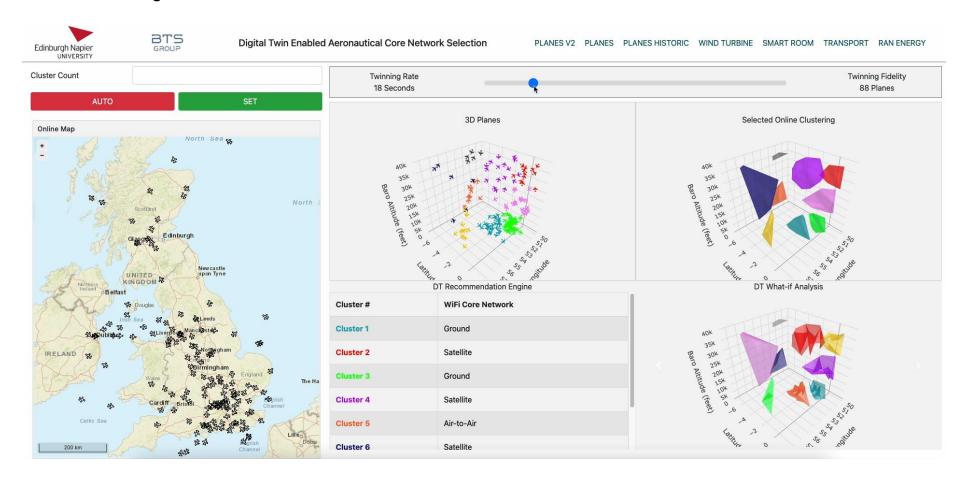


Humidity and Temperature

- Temperature (mean) - Humidity (mean)

<u>Digital Twin-enhanced 6G-Enabled Precise Ship Maneuvering for Efficient Naval Operations</u>

- RQ How to improve ship maneuvering in congested seaports?
- WHY Current navigation methods are imprecise, leading to ship collisions, increased fuel usage, and delays in docking
- HOW -
 - Digital twin and drone-assisted data collection enables precise ship maneuvering
 - Recommendation engine gives optimized ship paths during docking
 - Reduced fuel consumption and minimized delays

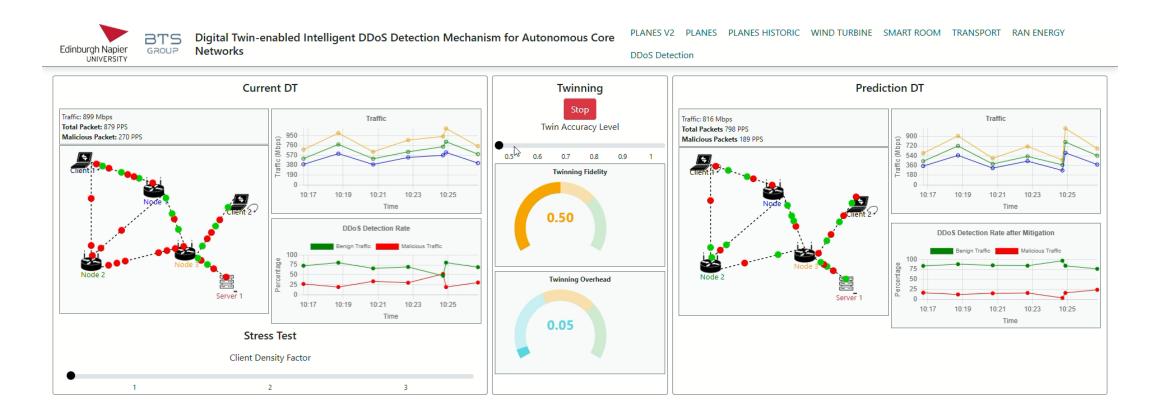

- A. Masaracchia, D.V. Huynh, A. George, B. Canberk, T.Q. Duong, 'Towards the Metaverse Realization in 6G: Orchestration of RIS-enabled Smart Wireless Environments via Digital Twins', IEEE Internet of Things Magazine, vol. 7, no. 2, pp. 22-28, March 2024, Scopus Journal Quartile: Q1.
- Y. Yigit, H. Ahmadi, G. Yurdakul, B. Canberk, T. Hoang, T.Q. Duong, 'Digi-Infrastructure: Digital Twin-enabled Traffic Shaping with Low-Latency for 6G Smart Cities', IEEE Communications Standards Magazine, April 2024, Scopus Journal Quartile: Q1.
 Y. Yigit, L.D. Nguyen, M. Ozdem, O.K. Kinaci, T. Hoang, B. Canberk, T.Q. Duong, "TwinPort: 5G Drone-assisted Data Collection with Digital Twin for Smart Seaports," in Nature Scientific Reports, vol. 13, August 2023

<u>Digital Twin-enabled Aeronautical Core Network Selection</u>

- Near real-time air traffic monitoring
- DT Recommendation Engine

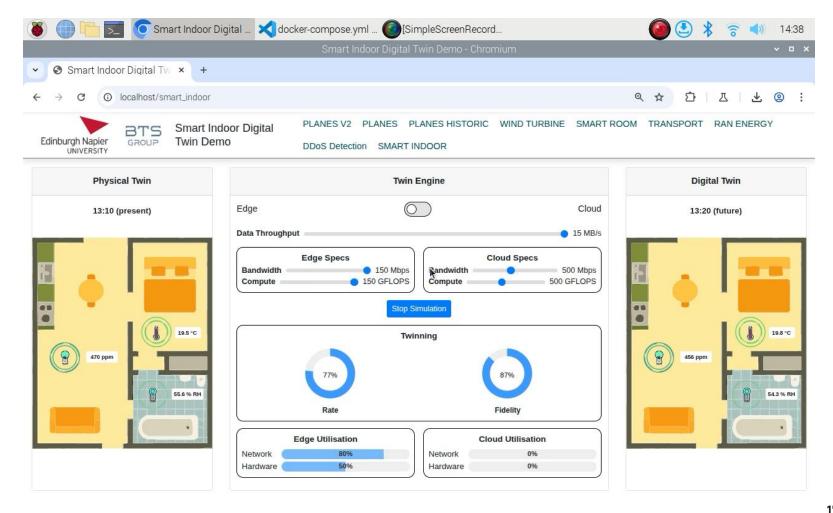
Digital Twin-enabled Energy-Efficient Radio Access Network Management

- Network performance and power consumption monitoring
- Scenario analysis on transmission power control for energy efficiency



<u>Digital Twin-enabled Intellient DDoS Detection Mechanism for Autonomous Core Networks</u>

- Traffic monitoring, DDoS detection and mitigation
- Scenario analysis on twining fidelity



Digital Twin-enabled Air Quality Management of a Smart Building

- Multi-Step Time Series Forecasting using Long-Short Term Memory for temperature, humidity, CO₂, and smoke data.
- Twining rate and fidelity analysis under edge vs cloud deployment

THANK YOU!

Prof. Berk Canberk

The School of Computing, Engineering and The Built Environment Edinburgh Napier University, UK

b.canberk@napier.ac.uk

www.bcrg.uk

www.bcrg.uk

